Обшая 2	кимия
---------	-------

Общая химия	Уравнение полуреакции восстановления окислителя:
Студент:	
Группа:	Суммарное уравнение реакции в ионно-молекулярной и молекулярной
Дата сдачи работы:	формах:
Лабораторная работа №	
ОБЩИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ Цель работы:	Взаимодействие меди с серной кислотой: Выводы: (Объясните различие во взаимодействии взятых металлов с разбавленной серной кислотой):
Опыт 1 Взаимодействие металлов с кислотами Опыт 1(а). Взаимодействие металлов с разбавленной серной кислотой. Реактивы: серная кислота 1 М, цинк, медь, железо Наблюдения:	Опыт 1(б). Взаимодействие концентрированной серной кислоты с медью. Реактивы: концентрированная серная кислота 1 М, медные опилки
	универсальный индикатор, дистиллированная вода
Взаимодействие <u>цинка с серной кислотой:</u> Уравнение полуреакции окисления восстановителя:	Наблюдения: Уравнение полуреакции окисления восстановителя:
Уравнение полуреакции восстановления окислителя:	Уравнение полуреакции восстановления окислителя:
Суммарное уравнение реакции в ионно-молекулярной и молекулярной формах:	Суммарное уравнение реакции в ионно-молекулярной и молекулярной формах:
Взаимодействие железа с серной кислотой:	
Уравнение полуреакции окисления восстановителя:	Уравнение взаимодействия выделившегося газа с дистиллированной водой:

Выводы: (Определите окислитель и восстановитель в данной реакции. В чем отличие окислительных свойств разбавленной и концентрированной серной кислоты? Назовите, какой газ выделяется при взаимодействии меди с концентрированной серной кислотой?)

Опыт 1(в).	Взаимодействие концентрированной серной кислоты с цинком.
Реактивы: ко	онцентрированная серная кислота 1 М, цинк, ацетат свинца
Наблюдени	я:

Уравнение полуреакции окисления восстановителя:								
Уравнение і	полуреакции	восстанов	зления с	жислите.	пя:			
Суммарное формах:	уравнение	реакции	в ион	но-молен	сулярной	и м	олекул	ярной
Уравнение в	ззаимодейст	вия выделі	ившегос	ся газа с	ацетатом	СВИНЦ	(a:	
	пределите окис							

изменение восстановительных свойств металлов в опытах 1б и 1в)

Опыт 2. Взаимодействие металлов с растворами солей

Реактивы: ацетат или нитрат свинца, цинк, медь, железо Наблюдения:

Выводы: (Определите окислитель и восстановитель в данных реакциях. Сделайте вывод о вытеснительной способности металлов)

Опыт 3. Гальваническая пара металлов

Опыт 3 (а)

Реактивы: сульфат меди, цинк, соляная кислота

Наблюдения:

Уравнение реакции растворения цинка в соляной кислоте, процессы окисления и восстановления:

Уравнение реакции взаимодействия сульфата меди и металлического цинка:

Электрохимические процессы на поверхности цинка, покрытого медью:

Металлы: цинк $\left.\phi^0_{Zn^0}\right|_{Zn^{2+}}=$ ______ В, медь $\left.\phi^0_{Cu^0}\right|_{Cu^{2+}}=$ ______ В Схема гальванической пары металлов: _____

а) анод	б) катод											
Суммарная реакция:												
Расчет ЭДС коррозионного	Пропесса:											
тасчет эде коррозионного	процесса.											
Выводы: (Укажите, в какой объясните почему. Укажите, в поверхности какого металла провосстановительную активность м	какой металл будет явл исходит выделение газа? 1	ияться анодом, какой като	одом. На									
Опыт 3 (б) Реактивы: 0,1 М серная кровяная соль), стальная сн Наблюдения: Уравнение реакции раствор и восстановления:	крепка, цинк гранули	рованный										
H BOCCIANOBICINA.												
Уравнение реакции взаимо	действия сульфата ж	елеза (II) и гексацианос	феррата									
(III) калия:												
N												
Электрохимические процес	сы при контакте цин	ıка и железа: 20										
Металлы: цинк ${\phi_{Zn^0}^0}_{/Zn^{2+}}^-=$	в, свинец <i>ф</i>	$\rho_{Fe^0/_{Fe^{2+}}}^0 = \underline{\qquad} B$										
Суема гальванической пара												

а) анод				б) катод													
Суммарна	ая реак																

Расчет ЭДС коррозионного процесса:

Выводы: (Укажите, в какой из двух пробирок процесс взаимодействия с серной кислотой идет интенсивнее и объясните почему. Укажите, какой металл будет являться анодом, какой катодом. На поверхности какого металла происходит выделение газа? Какой металл окисляется? Сравните восстановительную активность металлов цинка и железа)

Опыт 4. Гальванический элемент

Реактивы: 1 M сульфат меди, 1 M сульфат цинка, медная и цинковая пластины, сульфат натрия

Наблюдения:

Электрохимическая схема гальванического элемента:

Металлы: цинк $\left. arphi_{Zn^0}^0 \right _{Zn^{2+}} =$	В, медь ${\varphi^0_{Cu^0}}_{/_{Cu^{2+}}} =$ В
а) анод	б) катод
Токообразущая реакция:	

Расчет ЭДС гальванического элемента:

Выводы: (Укажите, какой металл будет являться анодом, какой катодом. На поверхности какого металла происходит осаждение металла? Какой металл окисляется?)